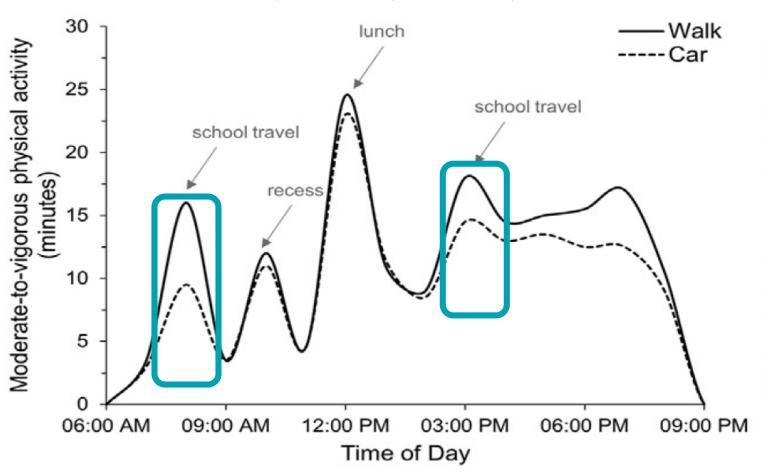
# Evaluating the Impact of Safe Routes to School Infrastructure on Active Commuting and Child Physical Activity in Central Texas Schools

Deanna Hoelscher, PhD, RDN, LD, CNS, FISBNPA Deborah Salvo, PhD

Yuzi Zhang, PhD, MS; Leigh Ann Ganzar, DrPH; Kevin Lanza, PhD; Sarah Bentley, MPH and Adriana Pérez, PhD

Healthier Texas Summit October 2, 2025





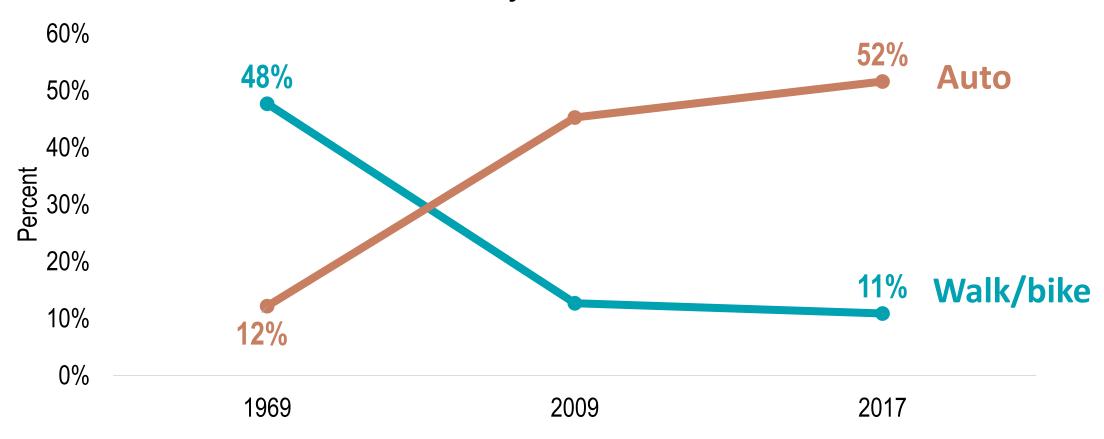



## Importance of Active Travel for Children



Martin et al (2016); Cooper et al (2003); Cooper et al (2012); Campos-Garzón et al (2023)

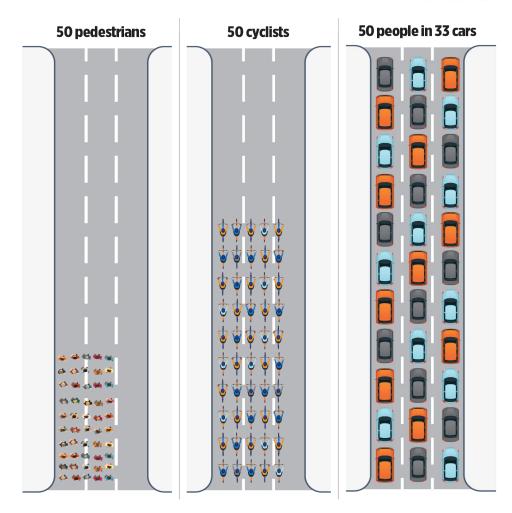



Active school travel may contribute up to **48%** of the physical activity recommendations in young people on school days.



## Status of ACS in Children in the US




#### Travel Mode to/from School in Elementary Schools in the US





## **Environmental Benefits of ACS**

- Small form factor
- Clean transportation
- Pewer wastes and resources



Hong et al (2018)



## STREETS Study Aims



To evaluate the effects of \$27.5 million USD allocated to Safe Routes to School infrastructure in Austin, Texas, USA.



#### Aim 1

Determine effects of SRTS infrastructure changes on child physical activity.



#### Aim 2

Determine effects of SRTS infrastructure changes on active commuting to school.



#### Aim 3

Examine the **cost effectiveness** of SRTS infrastructure changes on child physical activity levels.



## Study Design & Data Collection

- Serial cross-sectional sample; longitudinal study
- Data collection:
  - Jan 2019-May 2024 each spring and fall 11 waves
  - 92 elementary schools
    - 69 Infrastructure schools (municipal-funded)
    - 23 Comparison schools (surrounding school districts, no infrastructure funding)
  - No data collection for Wave 4 (fall 2020) and Wave 5 (spring 2021) due to COVID-19



## **Analytic Sample**

|      | Spring<br>2019 | Fall<br>2019 | Spring<br>2020 | Fall<br>2020 | Spring<br>2021      | Fall<br>2021 | Spring<br>2022 | Fall<br>2022 | Spring<br>2023 | Fall<br>2023 | Spring<br>2024 |  |
|------|----------------|--------------|----------------|--------------|---------------------|--------------|----------------|--------------|----------------|--------------|----------------|--|
|      |                |              |                |              | ID-19<br>collection |              |                |              |                |              |                |  |
| Wave | 1              | 2            | 3              | 4            | 5                   | 6            | 7              | 8            | 9              | 10           | 11             |  |

- The baseline measurement (1<sup>st</sup> measured wave) for participating schools ranged from Wave 1 (Spring 2019) to Wave 7 (Spring 2020)
- To control for confounding effects, only schools with the baseline at Wave 1 or Wave 2 were included in the analysis:
  - 84 elementary schools (91%)
    - 64 infrastructure schools
    - 20 comparison schools



#### Variables and Measures

#### School-level ACS

- SRTS tally recorded by teachers
- Grade 3-5 classrooms
- Tuesday, Wednesday, and Thursday: AM & PM
- School-level total ACS trips:
  - Number of trips to/from schools made by walking or biking
  - Summed across classrooms; average of percentages in each school

#### **SRTS** infrastructure

- Intention-to-treat analysis: Infrastructure schools vs. comparison schools
  - Expose to SRTS infrastructure vs. not exposed to SRTS infrastructure
- Policy implementation analysis: Infrastructure implementation status in infrastructure schools at each wave
  - Pre, during, and post-construction



## Analysis

- Mixed-effect linear models using R and SAS, with the school as the level of analysis, controlling for school-level covariates
  - School-level characteristics:
    - Texas Education Agency academic year 2018
      - Total school enrollment, number of girls, % race/ethnicity, community type (urban versus suburban), % economically disadvantaged students, % students with limited English proficiency.
  - Daily weather information:
    - NOAA Local Climatological Data.
    - Average daily weather measurements across Tuesday, Wednesday, and Thursday:
      - Mean daily maximum dry bulb temperature, mean daily precipitation, mean daily average wind speed



## Participating School Characteristics

#### Infrastructure vs. Comparison

Total school enrollment 558 656



The number of girls 271 321



% major urban communities 86% 15%



% economically disadvantaged students 58% 38%



% limited English proficiency students 37% 17%

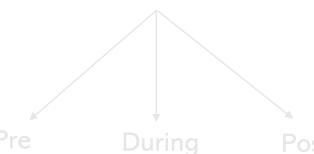


Number of measured waves 6.2 4.6



## School-level ACS over time: Analysis 1

Analysis 1: "Intention-to-Treat" policy intervention

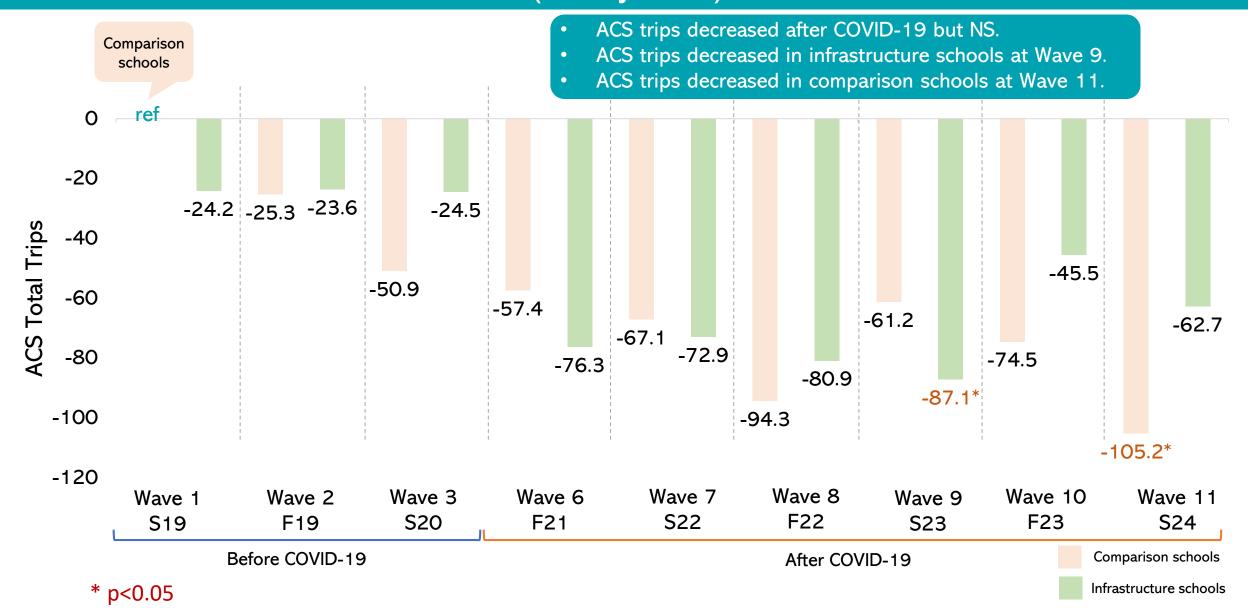

Infrastructure schools N=64

- Municipal bond funding in Central Texas
- Exposed to SRTS construction:

  infrastructure status at each way.

Comparison schools
N=20

- Similar to infrastructure schools located in central Texas
- No municipal funding
- Not exposed to SRTS construction




Post (at least 1 construction done)



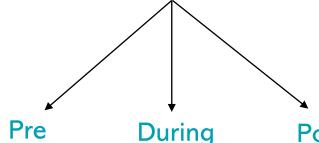


## School-level ACS over time: Intention-to-Treat policy intervention in schools (Analysis 1)



## School-level ACS over time: Analysis 2

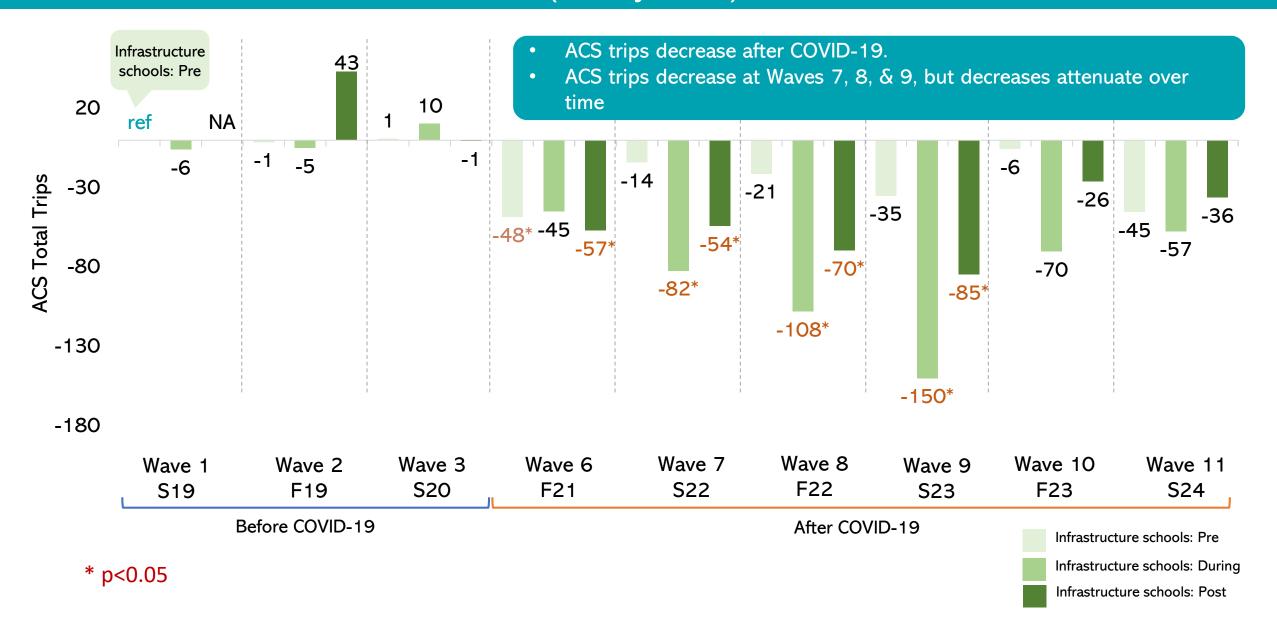
Analysis 1: "Intention-to-Treat" policy intervention


Analysis 2: Policy implementation in infrastructure schools

Infrastructure schools N=64

- Municipal bond funding in Central Texas
- Exposed to SRTS construction: infrastructure status at each wave

Comparison schools
N=20


- Similar to infrastructure schools located in central Texas
- No municipal funding
- Not exposed to SRTS construction



Post (at least 1 construction done)



# School-level ACS over time: Policy implementation in infrastructure schools (Analysis 2)



### Conclusions

- SRTS infrastructure negatively affects ACS in the short-term because of construction periods.
- Attaining positive effects in ACS after urban transformations may require longer follow-up periods.
- Infrastructure changes are essential, but other promotional, educational, and cultural supports are needed to promote and sustain behavior change.
- ACS behaviors changed after COVID-19, but longer follow-up is needed to see if these changes persist.





# STREETS Project Findings:

Examining changes in overall physical activity levels using devicebased data





## Overarching Question:

Do Safe Routes to School infrastructure improvement projects make a difference for overall child physical activity levels over time?



## Why It Matters

- Only 24% of children and adolescents in the United States meet physical activity guidelines.
- Participation in physical activity declines with age, with steep declines as children transition into adolescence.
- Active travel can be a major contributor to overall physical activity among school-age children, but most children in the U.S. have limited active travel opportunities.
- Safe and supportive built environment infrastructure is critical for active travel at all ages, and it is especially true for the youngest and youngest road users.



## Benefits of Light-Intensity Physical Activity

- Active travel (walking, cycling) usually involves physical activity of light-tomoderate intensity.
- Light-intensity physical activity:
  - Increases cerebral blood flow in children.
  - Optimizes learning outcomes.
  - Is associated with weight control in children and adolescents above and beyond the effects of MVPA.
  - Is associated with healthier cardiometabolic profiles in adolescents.





## Assessing Changes in Physical Activity in the STREETS Project



Actigraph wGT3X-BT

- A cohort of children attending STREETS Project schools was recruited in the 3<sup>rd</sup> grade and followed through the 4<sup>th</sup> and 5<sup>th</sup> grades.
- Accelerometers are piezoelectric devices that measure movement through acceleration.
- The device belt was worn for a full week during waking hours.
- Accelerometer data can be used to derive total time spent in physical activities of different intensities.



### Accelerometer Measurement Schedule

| Measure     | Measure start      | Measure start Post-COVIE |                    |
|-------------|--------------------|--------------------------|--------------------|
| timepoint   | Cohort 2018-2019   | Cohort 2019-2020         | Cohort 2021-2022   |
| Spring 2019 | Grade 3 (baseline) |                          |                    |
| Fall 2019   | Grade 4            | Grade 3 (baseline)       |                    |
| Fall 2020   | Grade 5 (1)        | Grade 4                  |                    |
| Spring 2021 | Grade 5 (2)        |                          |                    |
| Fall 2021   |                    | Grade 5 (1)              | Grade 3 (baseline) |
| Spring 2022 |                    | Grade 5 (2)              |                    |
| Fall 2022   |                    |                          | Grade 4            |
| Fall 2023   |                    |                          | Grade 5 (1)        |
| Spring 2024 |                    |                          | Grade 5 (2)        |



### Accelerometer Measurement Schedule

| Measure     | Measure start      | Measure start Post-COVII |                    |  |  |
|-------------|--------------------|--------------------------|--------------------|--|--|
| timepoint   | Cohort 2018-2019   | Cohort 2019-2020         | Cohort 2021-2022   |  |  |
| Spring 2019 | Grade 3 (baseline) |                          |                    |  |  |
| Fall 2019   | Grade 4            | Grade 3 (baseline)       |                    |  |  |
| Fall 2020   | Grade 5 (1)        | Grade 4                  |                    |  |  |
| Spring 2021 | Grade 5 (2)        |                          |                    |  |  |
| Fall 2021   |                    | Grade 5 (1)              | Grade 3 (baseline) |  |  |
| Spring 2022 |                    | Grade 5 (2)              |                    |  |  |
| Fall 2022   |                    |                          | Grade 4            |  |  |
| Fall 2023   |                    |                          | Grade 5 (1)        |  |  |
| Spring 2024 |                    |                          | Grade 5 (2)        |  |  |





#### Accelerometer Measurement Schedule

Measure timepoint

Spring 2019

Fall 2019

Fall 2020

Spring 2021

Fall 2021

Spring 2022

Measure start pre-COVID

Cohort 2018-2019

Grade 3 (baseline)

Grade 4

Grade 5 (1)

Grade 5 (2)

Cohort 2019-2020

Grade 3 (baseline)

Grade 4

Grade 5 (1)

Grade 5 (2)

| Measurement                | Grade       | Semester                 |
|----------------------------|-------------|--------------------------|
| Baseline measure           | Grade 3     | Spring 2019, Fall 2019   |
| Second Measure             | Grade 4     | Fall 2019, Fall 2020     |
| Last Measure: the furthest | Grade 5 (1) | Fall 2020, Fall 2021     |
| one in Grade 5             | Grade 5 (2) | Spring 2021, Spring 2022 |

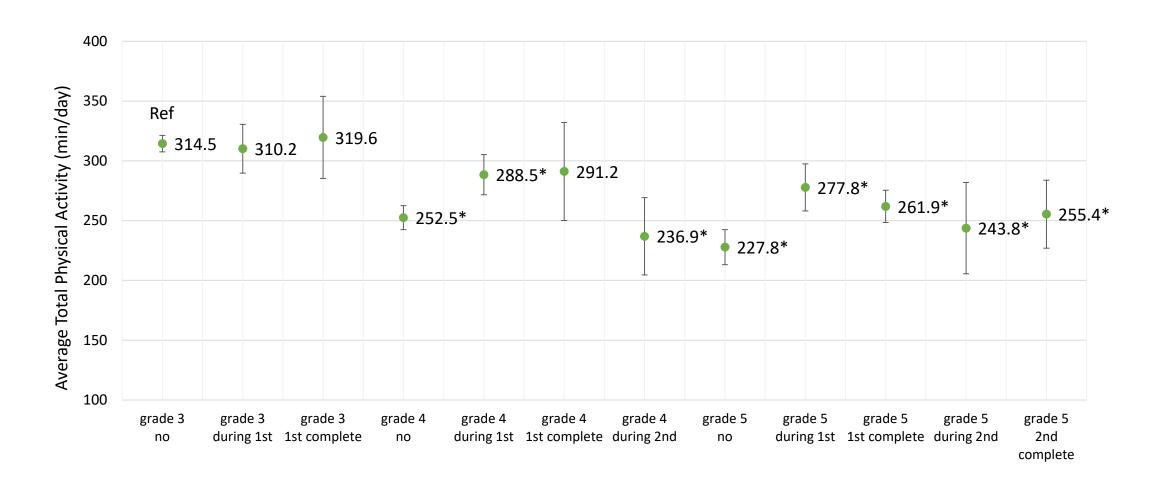




## **Analysis**

- Mixed-effects linear regression models:
  - Model 1 Outcome: Total Physical Activity (LMVPA); Model 2 Outcome: MVPA
  - Main exposure: grade\*infrastructure status (2-way interaction term)
  - Covariates: baseline physical activity, total school enrollment, percentage of economically disadvantaged students, percentage of students with limited English, proportion of sidewalk coverage at 1-mile buffer in 2018, child sex, child race, and parent education

## Infrastructure schools (N=21), students at baseline (N=275)


 Municipal bond funding in Central Texas

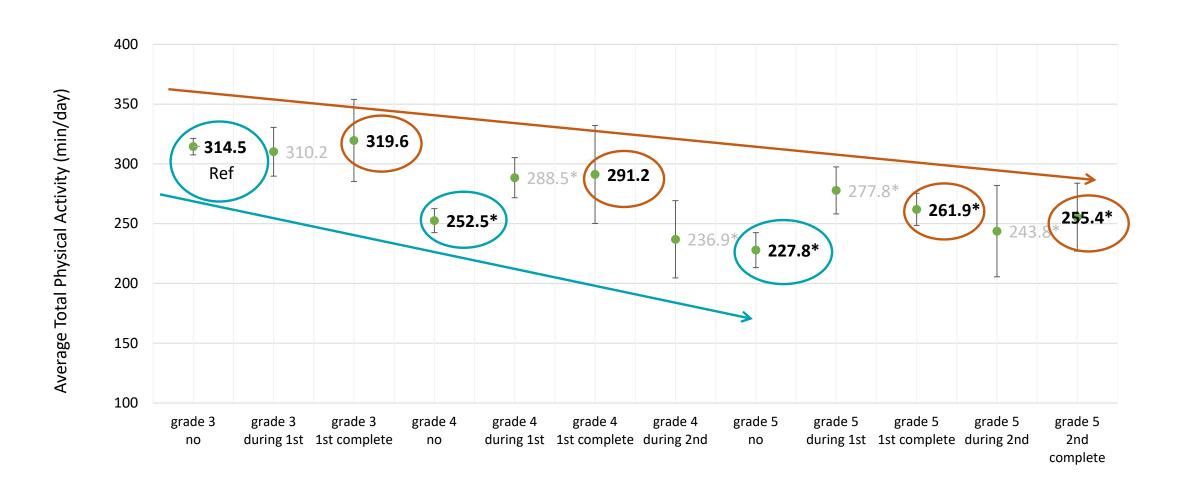
#### <u>Infrastructure status at each measurement time</u>

- No construction
- During 1st construction
- 1st construction completed
- During 2nd construction
- 2nd construction completed



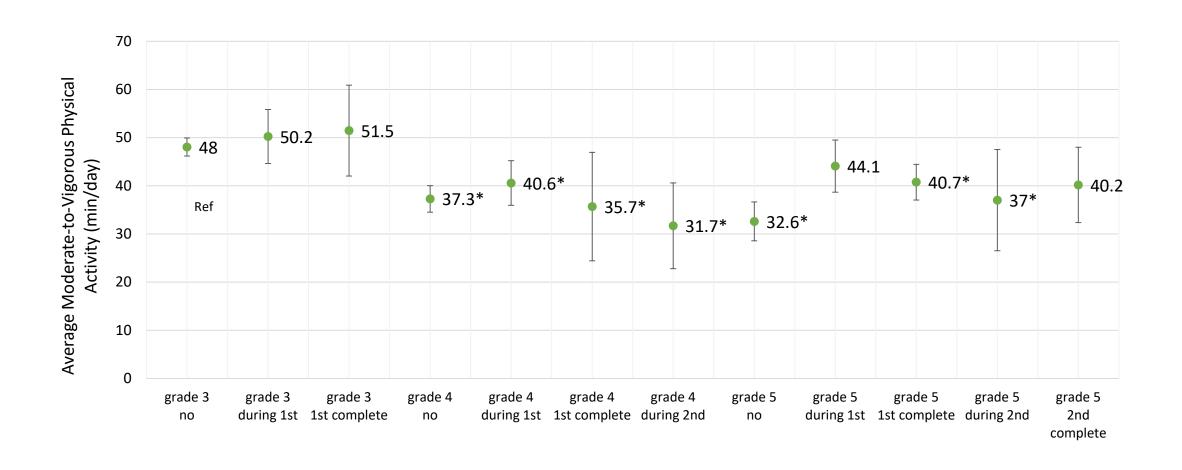
### Results: Accelerometer-based Total Physical Activity (LMVPA)





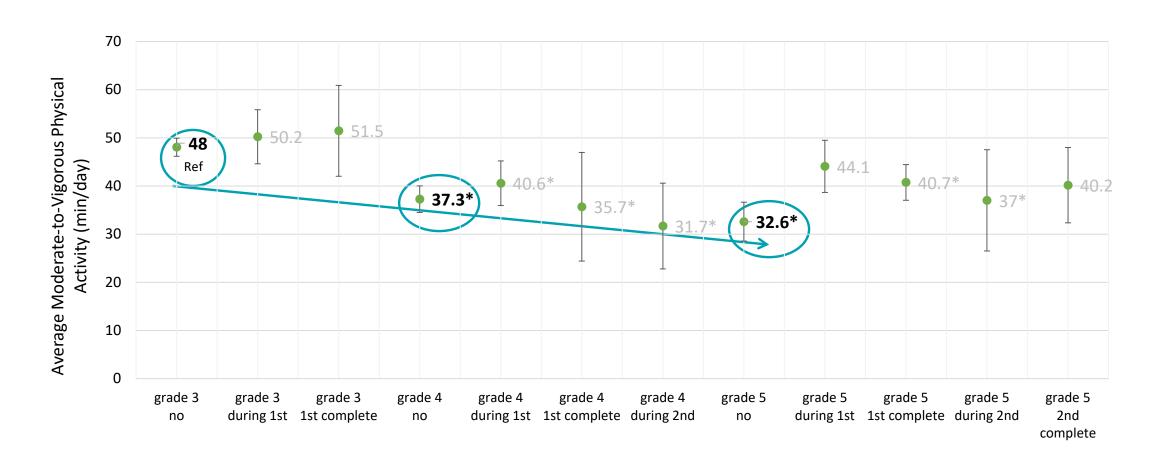

#### Results: Accelerometer-based Total Physical Activity (LMVPA)





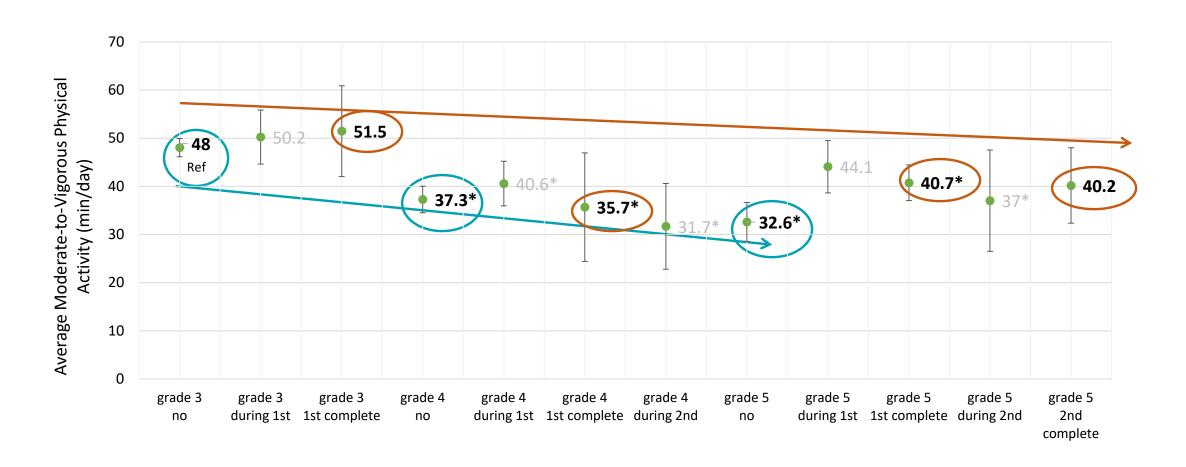

#### Results: Accelerometer-based Total Physical Activity (LMVPA)






#### Results: Accelerometer-based MVPA






#### Results: Accelerometer-based MVPA





#### Results: Accelerometer-based MVPA





## Conclusions

- Children followed from the 3<sup>rd</sup> to the 5<sup>th</sup> grade that were never exposed to infrastructure changes showed an apparently steeper decline in both total and moderate-to-vigorous-intensity physical activity than children who were eventually exposed to infrastructure changes.
- Infrastructure changes may be supporting more light-intensity physical activity, presumably through increases in active community to school.
- Children exposed to 2 infrastructure projects by the 5<sup>th</sup> grade have no significant declines in MVPA relative to their levels in the 3<sup>rd</sup> grade, suggesting that high doses of SRTS infrastructure may slow down expected age-related declines.
- More work is needed to confirm these associations.



# THANK YOU!





## Acknowledgements

#### Team members

- Dr. Deanna Hoelscher
- Dr. Deb Salvo
- Dr. Adriana Pérez
- Dr. Leigh Ann Ganzar
- Dr. Yuzi Zhang
- Dr. Shelton Brown
- Sarah Bentley, MPH
- Dr. Katie Burford
- Dr. Kaitlyn Swinney
- Dr. Kevin Lanza

- Thank you to the City of Austin SRTS department and study participants.
- This research was funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development, grant number R01 HD097669, and support was provided by the Michael and Susan Dell Foundation through the Michael & Susan Dell Center for Healthy Living.



## Thank you!

## Deanna Hoelscher, PhD, RDN, LD, CNS, FISBNPA

- John P. McGovern Professor in Health Promotion and Austin Regional Dean
- UTHealth Houston, School of Public Health in Austin
- Michael & Susan Dell Center for Healthy Living
- Deanna.M.Hoelscher@uth.tmc.edu





## Number of Participating Schools & School-level %ACS

|      | Infrastructure Schools, N=64         |             |             |             |    | Comparison Schools, N=20 |             |             |  |
|------|--------------------------------------|-------------|-------------|-------------|----|--------------------------|-------------|-------------|--|
| Wave | N                                    | Total       | To School   | From School | N  | Total                    | To School   | From School |  |
| 1    | 60                                   | 13.1 (9.7)  | 10.3 (7.7)  | 16.0 (12.7) | 6  | 14.4 (10.9)              | 13.3 (11.4) | 17.6 (11.1) |  |
| 2    | 54                                   | 14.4 (12.0) | 12.9 (10.5) | 15.9 (14.4) | 19 | 14.4 (9.6)               | 11.6 (8.4)  | 17.3 (11.3) |  |
| 3    | 44                                   | 13.6 (10.5) | 10.2 (8.5)  | 16.9 (13.5) | 15 | 14.3 (10.4)              | 10.4 (9.1)  | 18.3 (12.8) |  |
| 4    | . No data collection during COVID 10 |             |             |             |    |                          |             |             |  |
| 5    | No data collection during COVID-19   |             |             |             |    |                          |             |             |  |
| 6    | 45                                   | 13.8 (10.2) | 12.0 (9.4)  | 15.5 (11.4) | 9  | 15.2 (12.0)              | 12.4 (11.4) | 18.0 (12.7) |  |
| 7    | 41                                   | 12.3 (10.5) | 10.0 (8.6)  | 14.6 (12.8) | 12 | 11.9 (9.6)               | 8.4 (7.2)   | 15.5 (12.3) |  |
| 8    | 41                                   | 13.2 (10.7) | 11.8 (10.0) | 14.6 (11.7) | 8  | 9.0 (7.3)                | 5.8 (5.4)   | 12.6 (9.8)  |  |
| 9    | 35                                   | 12.7 (10.4) | 11.6 (10.7) | 13.8 (10.6) | 8  | 11.4 (9.3)               | 9.0 (9.4)   | 13.8 (9.7)  |  |
| 10   | 42                                   | 14.3 (12.8) | 12.7 (12.1) | 15.9 (14.2) | 8  | 17.6 (11.2)              | 14.8 (10.3) | 20.7 (12.4) |  |
| 11   | 37                                   | 13.0 (12.7) | 11.1 (11.7) | 15.0 (14.0) | 7  | 13.6 (8.5)               | 9.4 (6.6)   | 17.8 (11.0) |  |



